

1A Ultra Low Dropout Linear Regulator

CL2940

General Description

The CL2940 is a low dropout three-terminal regulator with a typical dropout of 0.28V at 1A output current. The CL2940 provides current limit and thermal shutdown. On-chip thermal shutdown provides protection against any combination of high current and ambient temperature that would create excessive junction temperatures. The CL2940 has 2.5V, 3.3V and 5.0V versions.

The CL2940 is available in the industry standard TO-220-3, TO-263-3 and TO-252-2 packages.

Features

- Minimum Guaranteed Output Current: 1A
- Dropout Voltage at IOUT=1A: 0.28V
- Output Accuracy: ± 1%
- Low Ground Current
- Fast Transient Response
- Internal Current Limit and Thermal Protection
- Reversed-battery and Reversed-lead Insertion Protection

Applications

- LCD TV
- Set Top Box
- LCD Monitor
- SMPS Post Regulator
- USB Power Supply
- Portable Instrumentation
- Laptop, Palmtop and Notebook

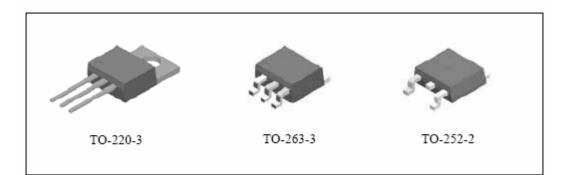


Figure 1. Package Types of CL2940

1A Ultra Low Dropout Linear Regulator

CL2940

Function Block

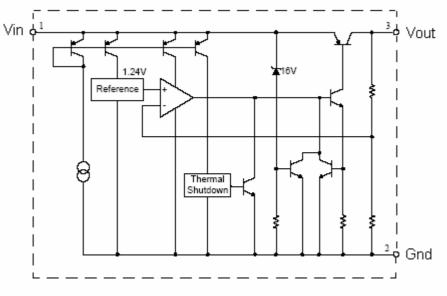


Figure 2. Functional Block Diagram of CL2940

Pin Descriptions

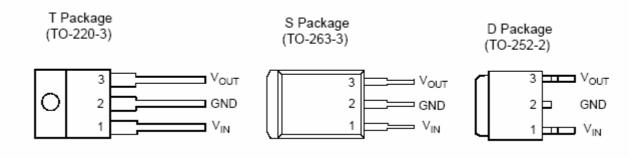
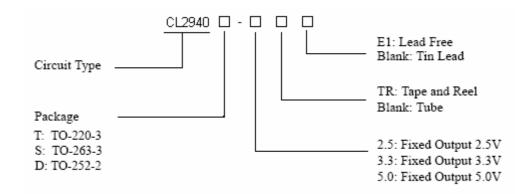


Figure 3. Pin Configuration of CL2940 (Top View)

Pin No.	Symbol	Function			
1	Vin	Unregulated Input			
2	GND	Ground pin. This pin and TAB are internally connected			
3	Vout	Regulated Output			


ShangHai Chipland Micro-electronics technology co., Itd

1A Ultra Low Dropout Linear Regulator

CL2940

Ordering Information

Package	Temperature Range	Part number (Lead Free) Marking ID		Packing Type	
		CL2940T-2.5E1	CL2940T-2.5		
TO-220-3	-40 to 125℃	CL2940T-3.3E1	CL2940T-3.3	Tube	
		CL2940T-5.0E1	CL2940T-5.0		
		CL2940S-2.5E1	CL2940S-2.5	Tube	
	-40 to 125℃	CL2940S-2.5TRE1	CL2940S-2.5	Tape & Reel	
TO-263-3		CL2940S-3.3E1	CL2940S-3.3	Tube	
10-203-3		CL2940S-3.3TRE1	CL2940S-3.3	Tape & Reel	
		CL2940S-5.0E1	CL2940S-5.0	Tube	
		CL2940S-5.0TRE1	CL2940S-5.0	Tape & Reel	
	-40 to 125℃	CL2940D-2.5E1	CL2940D-2.5	Tube	
		CL2940D-2.5TRE1	CL2940D-2.5	Tape & Reel	
TO-252-2		CL2940D-3.3E1	CL2940D-3.3	Tube	
		CL2940D-3.3TRE1	CL2940D-3.3	Tape & Reel	
		CL2940D-5.0E1 CL2940D-5.0		Tube	
		CL2940D-5.0TRE1	CL2940D-5.0	Tape & Reel	

CL2940

Absolute Maximum Ratings (Note1)

Symbol	Parameter	Range	Unit
Vin	Supply voltage	16	V
TJ	Maximum Operating Junction Temperature	150	°C
Tstg	Storage Temperature Range	-60 ~ 150	°C
Tlead	Lead Temperature (Soldering, 10sec)	300	°C
	ESD (Machine Model)	±300	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

■ Recommended Operating Conditions (Ta= 25°C)

Parameter	Symbol	Range	Unit
Supply voltage	Vin	13.2	V
Operating Junction Temperature	TJ	-40 ~ 125	°C

Electrical Characteristics

CL2940-2.5V Electrical Characteristics

Operating Conditions: Vin=3.5V, Iout=10mA, Cin=10 μ F, Cout=10 μ F, TJ=25°C, unless otherwise specified. The **Boldface** applies over -40°C \leq TJ \leq 125°C.

Symbol	Parameter	Test C	Min	Тур.	Max	Unit	
		lout=10mA		2.475	2.5	2.525	V
Vout	Output voltage	$10\text{mA} \le \text{lout} \le 1\text{A}$ $3.5\text{V} \le \text{Vin} \le 13.2\text{V}$		2.45		2.55	V
Vrline	Line Regulation	lout=10mA, 3.5V≤Vin≤13.2V			5.0	25	mV
Vrload	LOAD Regulation	Vin =3.5V, 10mA≤lout≤1A			7.5	37.5	mV
ΔVout / ΔT	Output Voltage Temperature Coefficient	lout=10mA			50	250	µV/°C
VDROP	Dropout Voltage (Note 2)	∆Vout=1%	lout=0.1A		70	200	mV
VDROP			lout=1A		280	550	mV
	Ground Current	$\lambda/in=2.5\lambda/$	lout=0.75A		12	25	mA
Ignd	Giouna Current	Vin=3.5V	lout=1A		18		mA
ILIMT	Current Limit	Vout=0V (Note 3)		1.5	2.2		Α
ILO(min)	Minimum Load Current				1	5	mA
Vno	Output Noise Voltage	10Hz to 100KHz, lout=0.1A			400		μVrms

Note 2: Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value which is measured at VOUT +1V applied to VIN.

Note 3: VIN=VOUT(NOMINAL)+1V.

■ Electrical Characteristics (Continued)

CL2940-3.3V Electrical Characteristics

Operating Conditions: Vin=4.3V, Iout=10mA, Cin=10 μ F, Cout=10 μ F, TJ=25°C, unless otherwise specified. The **Boldface** applies over -40°C \leq TJ \leq 125°C.

Symbol	Parameter	Test C	Min	Тур.	Max	Unit	
		lout=10mA		3.27	3.3	3.33	V
Vout	Output voltage	$10mA \le lout \le 1A$ $4.3V \le Vin \le 13.2V$		3.23		3.37	V
Vrline	Line Regulation	lout=10mA, 4.3V≤Vin≤13.2V			6.6	33	mV
Vrload	LOAD Regulation	Vin =4.3V, 10mA≤lout≤1A			9.9	50	mV
ΔVout / ΔT	Output Voltage Temperature Coefficient	lout=10mA			66	330	µV/°C
	DROP Dropout Voltage (Note 2)	∆Vout=1%	lout=0.1A		70	200	mV
VDROP			lout=1A		280	550	mV
	Crowned Current	Vin=4.3V	lout=0.75A		12	25	mA
Ignd	Ground Current	••••••	lout=1A		18		mA
ILIMT	Current Limit	Vout=0V (Note 3)		1.5	2.2		А
ILO(min)	Minimum Load Current				1	5	mA
Vno	Output Noise Voltage	10Hz to 100KHz, lout=0.1A			400		µVrms

Note 2: Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value which is measured at VOUT +1V applied to VIN.

Note 3: VIN=VOUT(NOMINAL)+1V.

Electrical Characteristics (Continued)

CL2940-5.0V Electrical Characteristics

Operating Conditions: Vin=6V, Iout=10mA, Cin=10 μ F, Cout=10 μ F, TJ=25°C, unless otherwise specified. The **Boldface** applies over -40°C \leq TJ \leq 125°C.

Symbol	Parameter	Test C	Min	Тур.	Max	Unit	
		lout=10mA		4.95	5	5.05	V
Vout			0mA ≤ lout ≤ 1A / ≤ Vin ≤ 13.2V			5.10	V
Vrline	Line Regulation	lout=10mA, 6V≤Vin≤13.2V			10	50	mV
Vrload	LOAD Regulation	Vin =6V, 10mA≤lout≤1A			15	75	mV
ΔVout / ΔT	Output Voltage Temperature Coefficient	lout=10mA			100	500	µV/ °C
	DROP Dropout Voltage (Note 2)	∆Vout=1%	lout=0.1A		70	200	mV
VDROP			lout=1A		280	550	mV
	Cround Current	Vin=6V	lout=0.75A		12	25	mA
Ignd	Ground Current	•••••	lout=1A		18		mA
ILIMT	Current Limit	Vout=0V (Note 3)		1.5	2.2		А
ILO(min)	Minimum Load Current				1	5	mA
Vno	Output Noise Voltage	10Hz to 100KHz, lout=0.1A			400		μVrms

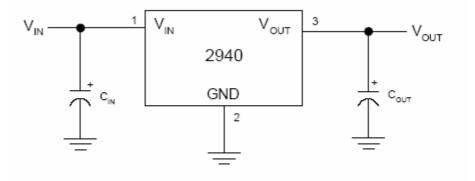
Note 2: Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value which is measured at VOUT +1V applied to VIN.

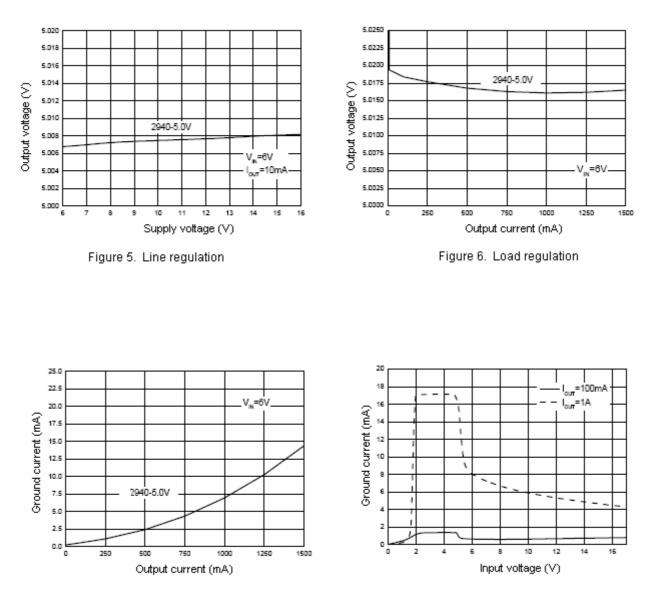
Note 3: VIN=VOUT(NOMINAL) + 1V.

1A Ultra Low Dropout Linear Regulator

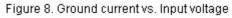
CL2940

■ Test Circuit




Figure 4. Test circuit of CL2940

Note: CIN is required if regulator is located far from power supply filter and is recommended to be 0.47µF or greater. To maintain stability, Cou⊤ is recommended to be 2.2µF or greater. The ESR of this capacitor is critical, please see curve.


1A Ultra Low Dropout Linear Regulator

CL2940

■Typical Performance Characteristics

Figure 7. Ground current vs. Output current

CL2940

■Typical Performance Characteristics (Continued)

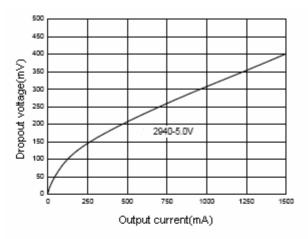
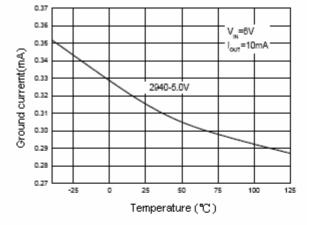



Figure 9. Dropout voltage vs. Output current

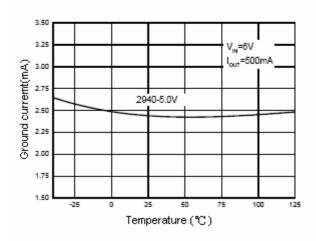


Figure 11. Ground current vs. Temperature

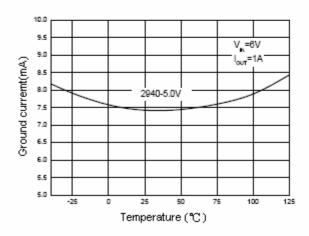


Figure 12. Ground current vs. Temperature

1A Ultra Low Dropout Linear Regulator

CL2940

■Typical Performance Characteristics (Continued)

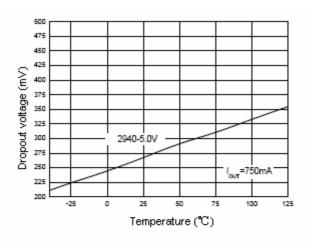


Figure 13. Dropout voltage vs. Temperature

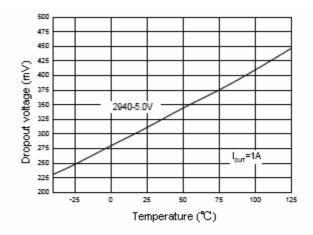


Figure 14. Dropout voltage vs. Temperature

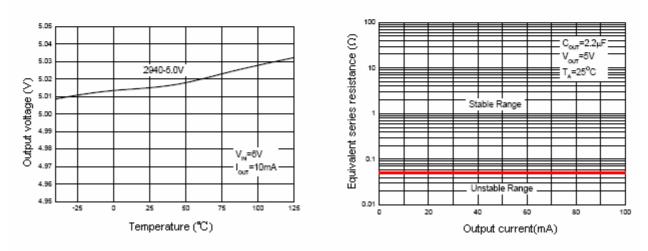
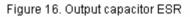



Figure 15. Output voltage vs. Temperature

1A Ultra Low Dropout Linear Regulator

CL2940

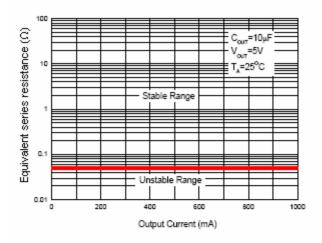


Figure 17. Output Capacitor ESR

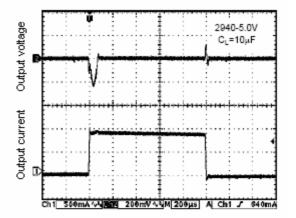


Figure 18. Load Transient

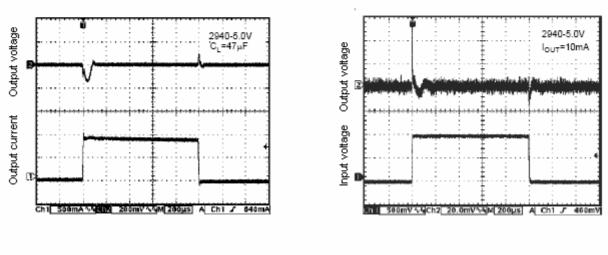


Figure 19. Load Transient

Figure 20. Line Transient

1A Ultra Low Dropout Linear Regulator

CL2940

■Typical Performance Characteristics (Continued)

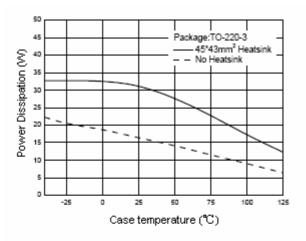


Figure 21. Power dissipation vs. Case temperature

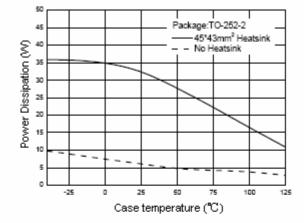


Figure 22. Power dissipation vs. Case temperature

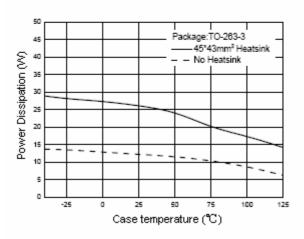
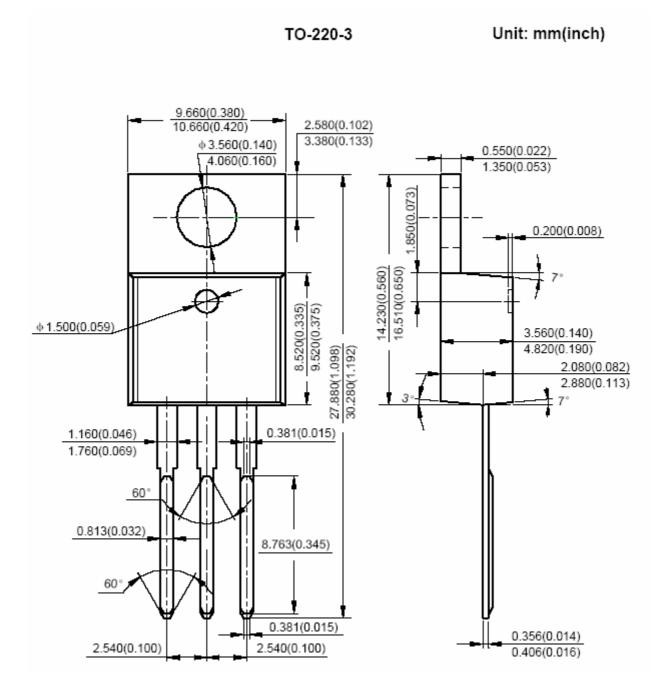
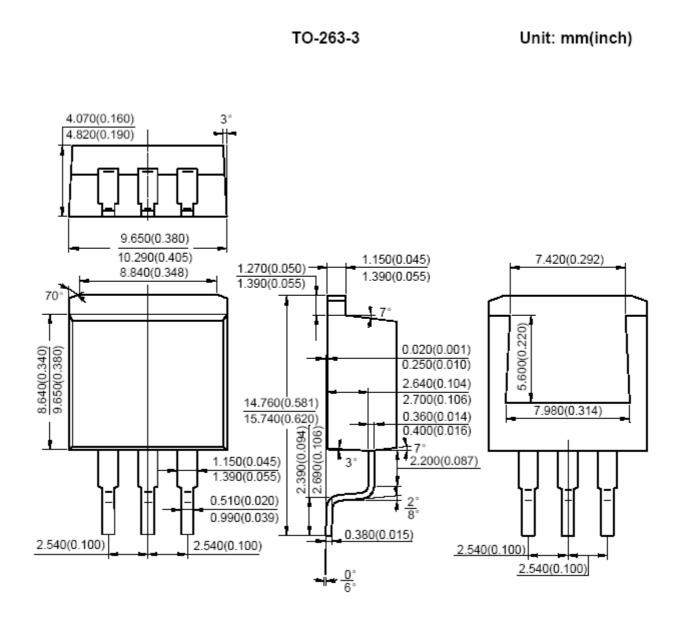



Figure 23. Power dissipation vs. Case temperature

CL2940

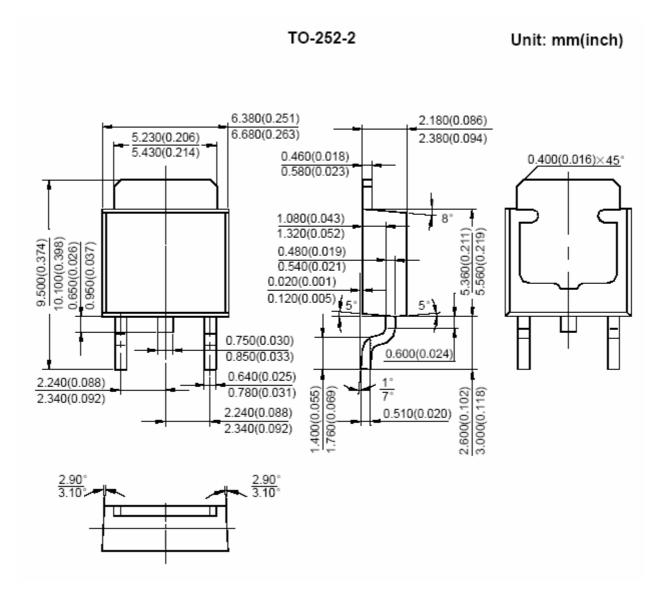
Package Mechanical Data



1A Ultra Low Dropout Linear Regulator

CL2940

Package Mechanical Data (Continued)



1A Ultra Low Dropout Linear Regulator

CL2940

Package Mechanical Data (Continued)

1A Ultra Low Dropout Linear Regulator

CL2940

IMPORTANT NOTICE

ShangHai Chipland Micro-electronics technology Limited reserves the right to make changes without further notice to any products or specifications herein. And ShangHai Chipland Micro-electronics technology Limited does not assume any responsibility for use of any its products for any particular purpose, nor does ShangHai Chipland Micro-electronics technology Limited assume any liability arising out of the application or use of any its products or circuits. ShangHai Chipland Micro-electronics technology Limited does not convey any license under its patent rights or other rights nor the rights of others.